

Results of Proficiency Test Turbine Oil (fresh) May 2023

Organized by: Institute for Interlaboratory Studies

Spijkenisse, the Netherlands

Author: ing

ing. A. Ouwerkerk

Correctors: ing. M. Approved by: ing. A.S

ing. M. Meijer & ing. R.J. Starink

ing. A.S. Noordman-de Neef

Report:

iis23L04

July 2023

CONTENTS

1	INTRODUCTION	3
2	SET UP	3
2.1	ACCREDITATION	3
2.2	PROTOCOL	3
2.3	CONFIDENTIALITY STATEMENT	3
2.4	SAMPLES	4
2.5	STABILITY OF THE SAMPLES	4
2.6	ANALYZES	5
3	RESULTS	5
3.1	STATISTICS	5
3.2	GRAPHICS	6
3.3	Z-SCORES	7
4	EVALUATION	7
4.1	EVALUATION PER TEST	8
4.2	PERFORMANCE EVALUATION FOR THE GROUP OF LABORATORIES	10
4.3	COMPARISON OF THE PROFICIENCY TEST OF MAY 2023 WITH PREVIOUS PTS	11

Appendices:

1.	Data, statistical and graphic results	12
2.	Number of participants per country	32
3	Abbreviations and literature	33

1 Introduction

Since 2018 the Institute for Interlaboratory Studies (iis) organizes a proficiency scheme for the analysis of fresh Turbine Oil every year. During the annual proficiency testing program 2022/2023 it was decided to continue the round robin for the analysis of fresh Turbine Oil.

In this interlaboratory study 26 laboratories in 19 countries registered for participation, see appendix 2 for the number of participants per country. In this report the results of the Turbine Oil (fresh) proficiency test are presented and discussed. This report is also electronically available through the iis website www.iisnl.com.

2 SET UP

The Institute for Interlaboratory Studies (iis) in Spijkenisse, the Netherlands, was the organizer of this proficiency test (PT). Sample analyzes for fit-for-use and homogeneity testing were subcontracted to an ISO/IEC17025 accredited laboratory. It was decided to send one sample of fresh Turbine Oil in a 1 L bottle labelled #23071. The participants were requested to report rounded and unrounded test results. The unrounded test results were preferably used for statistical evaluation.

2.1 ACCREDITATION

The Institute for Interlaboratory Studies in Spijkenisse, the Netherlands, is accredited in agreement with ISO/IEC17043:2010 (R007), since January 2000, by the Dutch Accreditation Council (Raad voor Accreditatie). This PT falls under the accredited scope. This ensures strict adherence to protocols for sample preparation and statistical evaluation and 100% confidentiality of participant's data. Feedback from the participants on the reported data is encouraged and customer's satisfaction is measured on regular basis by sending out questionnaires.

2.2 PROTOCOL

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5). This protocol is electronically available through the iis website www.iisnl.com, from the FAQ page.

2.3 CONFIDENTIALITY STATEMENT

All data presented in this report must be regarded as confidential and for use by the participating companies only. Disclosure of the information in this report is only allowed by means of the entire report. Use of the contents of this report for third parties is only allowed by written permission of the Institute for Interlaboratory Studies. Disclosure of the identity of one or more of the participating companies will be done only after receipt of a written agreement of the companies involved.

2.4 SAMPLES

A batch of approximately 60 liters of fresh Turbine Oil was obtained from a third party. After homogenization 45 amber glass bottles of 1 L were filled and labelled #23071. The homogeneity of the subsamples was checked by determination of Density at 15 °C in accordance with ISO12185 on 8 stratified randomly selected subsamples.

	Density at 15 °C in kg/L
sample #23071-1	0.86794
sample #23071-2	0.86794
sample #23071-3	0.86793
sample #23071-4	0.86794
sample #23071-5	0.86794
sample #23071-6	0.86794
sample #23071-7	0.86794
sample #23071-8	0.86794

Table 1: homogeneity test results of subsamples #23071

From the above test results the repeatability was calculated and compared with 0.3 times the reproducibility of the reference test method in agreement with the procedure of ISO13528, Annex B2 in the next table.

	Density at 15 °C in kg/L
r (observed)	0.00001
reference test method	ISO12185:96
0.3 x R (reference test method)	0.00015

Table 2: evaluation of the repeatability of subsamples #23071

The calculated repeatability is in agreement with 0.3 times the reproducibility of the reference test method. Therefore, homogeneity of the subsamples was assumed.

To each of the participating laboratories one 1 L bottle of fresh Turbine Oil labelled #23071 was sent on April 19, 2023. An SDS was added to the sample package.

2.5 STABILITY OF THE SAMPLES

The stability of fresh Turbine Oil packed in amber glass bottles was checked. The material was found sufficiently stable for the period of the proficiency test.

2.6 ANALYZES

The participants were requested to determine: Total Acid Number, Air Release time at 50 °C, Density at 15 °C, Flash Point C.O.C., Foam Characteristics (Foaming Tendency, Foam Stability), Kinematic Viscosity at 40 °C and at 100 °C, Viscosity Index, Pour Point (Manual and Automated 1 °C interval), Sulfur, Water, Water Separability at 54 °C (Distilled water), Calcium as Ca, Phosphorus as P and Zinc as Zn.

Some extra information was asked about the determinations of Total Acid Number and Foam Characteristics.

It was explicitly requested to treat the sample as if it was a routine sample and to report the test results using the indicated units on the report form and not to round the test results, but report as much significant figures as possible. It was also requested not to report 'less than' test results, which are above the detection limit, because such test results cannot be used for meaningful statistical evaluations.

To get comparable test results a detailed report form and a letter of instructions are prepared. On the report form the reporting units are given as well as the reference test methods (when applicable) that will be used during the evaluation. The detailed report form and the letter of instructions are both made available on the data entry portal www.kpmd.co.uk/sgs-iis/. The participating laboratories are also requested to confirm the sample receipt on this data entry portal. The letter of instructions can also be downloaded from the iis website www.iisnl.com.

3 RESULTS

During five weeks after sample dispatch, the test results of the individual laboratories were gathered via the data entry portal www.kpmd.co.uk/sgs-iis/. The reported test results are tabulated per determination in appendix 1 of this report. The laboratories are presented by their code numbers.

Directly after the deadline, a reminder was sent to those laboratories that had not reported test results at that moment. Shortly after the deadline, the available test results were screened for suspect data. A test result was called suspect in case the Huber Elimination Rule (a robust outlier test) found it to be an outlier. The laboratories that produced these suspect data were asked to check the reported test results (no reanalyzes). Additional or corrected test results are used for data analysis and the original test results are placed under 'Remarks' in the result tables in appendix 1. Test results that came in after the deadline were not taken into account in this screening for suspect data and thus these participants were not requested for checks.

3.1 STATISTICS

The protocol followed in the organization of this proficiency test was the one as described for proficiency testing in the report 'iis Interlaboratory Studies: Protocol for the Organisation, Statistics and Evaluation' of June 2018 (iis-protocol, version 3.5).

For the statistical evaluation the *unrounded* (when available) figures were used instead of the rounded test results. Test results reported as '<...' or '>...' were not used in the statistical evaluation.

First, the normality of the distribution of the various data sets per determination was checked by means of the Lilliefors-test, a variant of the Kolmogorov-Smirnov test and by the calculation of skewness and kurtosis. Evaluation of the three normality indicators in combination with the visual evaluation of the graphic Kernel density plot, lead to judgement of the normality being either 'unknown', 'OK', 'suspect' or 'not OK'. After removal of outliers, this check was repeated. If a data set does not have a normal distribution, the (results of the) statistical evaluation should be used with due care.

The assigned value is determined by consensus based on the test results of the group of participants after rejection of the statistical outliers and/or suspect data.

According to ISO13528 all (original received or corrected) results per determination were submitted to outlier tests. In the iis procedure for proficiency tests, outliers are detected prior to calculation of the mean, standard deviation and reproducibility. For small data sets, Dixon (up to 20 test results) or Grubbs (up to 40 test results) outlier tests can be used. For larger data sets (above 20 test results) Rosner's outlier test can be used. Outliers are marked by D(0.01) for the Dixon's test, by G(0.01) or DG(0.01) for the Grubbs' test and by F(0.01) for the Rosner's test. Stragglers are marked by F(0.01) for the Dixon's test, by F(0.01) for the Rosner's test. Both outliers and stragglers were not included in the calculations of averages and standard deviations.

For each assigned value the uncertainty was determined in accordance with ISO13528. Subsequently the calculated uncertainty was evaluated against the respective requirement based on the target reproducibility in accordance with ISO13528. In this PT the criterion of ISO13528, paragraph 9.2.1, was met for all evaluated tests. Therefore, the uncertainty of all assigned values may be negligible and need not be included in the PT report.

Finally, the reproducibilities were calculated from the standard deviations by multiplying them with a factor of 2.8.

3.2 GRAPHICS

In order to visualize the data against the reproducibilities from literature, Gauss plots were made, using the sorted data for one determination (see appendix 1). On the Y-axis the reported test results are plotted. The corresponding laboratory numbers are on the X-axis. The straight horizontal line presents the consensus value (a trimmed mean). The four striped lines, parallel to the consensus value line, are the +3s, +2s, -2s and -3s target reproducibility limits of the selected reference test method. Outliers and other data, which were excluded from the calculations, are represented as a cross. Accepted data are represented as a triangle.

Furthermore, Kernel Density Graphs were made. This is a method for producing a smooth density approximation to a set of data that avoids some problems associated with histograms. Also, a normal Gauss curve (dotted line) was projected over the Kernel Density

Graph (smooth line) for reference. The Gauss curve is calculated from the consensus value and the corresponding standard deviation.

3.3 Z-SCORES

To evaluate the performance of the participating laboratories the z-scores were calculated. As it was decided to evaluate the performance of the participants in this proficiency test (PT) against the literature requirements (derived from e.g. ISO or ASTM test methods), the z-scores were calculated using a target standard deviation. This results in an evaluation independent of the variation in this interlaboratory study.

The target standard deviation was calculated from the literature reproducibility by division with 2.8. In case no literature reproducibility was available, other target values were used, like Horwitz or an estimated reproducibility based on former iis proficiency tests.

When a laboratory did use a test method with a reproducibility that is significantly different from the reproducibility of the reference test method used in this report, it is strongly advised to recalculate the z-score, while using the reproducibility of the actual test method used, this in order to evaluate whether the reported test result is fit-for-use.

The z-scores were calculated according to:

```
z_{\text{(target)}} = \text{(test result - average of PT)} / \text{target standard deviation}
```

The $z_{(target)}$ scores are listed in the test result tables in appendix 1.

Absolute values for z<2 are very common and absolute values for z>3 are very rare. Therefore, the usual interpretation of z-scores is as follows:

```
|z| < 1 good
1 < |z| < 2 satisfactory
2 < |z| < 3 questionable
3 < |z| unsatisfactory
```

4 **EVALUATION**

In this proficiency test no problems were encountered with the dispatch of the samples. Three participants reported test results after the final reporting date and two other participants did not report any test results. Not all participants were able to report all tests requested.

In total 24 participants reported 303 numerical test results. Observed were 11 outlying test results, which is 3.6%. In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

Not all data sets proved to have a normal Gaussian distribution. These are referred to as "not OK" or "suspect". The statistical evaluation of these data sets should be used with due care, see also paragraph 3.1.

4.1 EVALUATION PER TEST

In this section the reported test results are discussed per test. The test methods which were used by the various laboratories were taken into account for explaining the observed differences when possible and applicable. These test methods are also in the tables together with the original data in appendix 1. The abbreviations, used in these tables, are explained in appendix 3.

In the iis PT reports ASTM test methods are referred to with a number (e.g. D2270) and an added designation for the year that the test method was adopted or revised (e.g. D2270:10). When a method has been reapproved an "R" will be added and the year of approval (e.g. D2270:10R16).

- Total Acid Number: This determination was problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is not in agreement with the requirements of ASTM D664-A:18e2 IP and BEP at 60 mL, nor with the requirements of IP and BEP at 125 mL. When the test results for IP and BEP were evaluated separately, the calculated reproducibilities are only in agreement with IP at 60 mL, not with the requirements of BEP at 60 mL and 125 mL and IP at 125 mL.
- <u>Air Release time at 50 °C</u>: This determination was problematic. No statistical outliers were observed. The calculated reproducibility is not in agreement with the requirements of ASTM D3427:19.
- <u>Density at 15 °C</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical outlier is in agreement with the requirements of ISO12185:96.
- <u>Flash Point C.O.C.</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D92:18.
- Foam Characteristics (Tendency and Stability): This determination was problematic. No statistical outliers were observed over six parameters. It was decided not to calculate z-scores for Foaming Tendency at sequence I and III due to the large difference between calculated and reference reproducibility. The Foaming Tendency determination for sequence II is in agreement with the requirements of ASTM D892:18.

Almost all reported test results for Foam Stability were zero. Therefore, it was decided not to calculate z-scores.

The determination of the Foam Characteristics is very sensitive in maintenance and execution. In ASTM D892:18 many tips and tricks are given in the test method part X1. Possible sources for the large variation are the cleaning and checking of the air diffuser, air tubes and test cylinders, the air flow rate used during the blowing period.

Of the reporting participants seven used the sample as received and five after agitation. All reporting participants used a metal diffuser, except one.

<u>Kinematic Viscosity at 40 °C</u>: This determination was not problematic. Two statistical outliers were observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D445:21e2.

<u>Kinematic Viscosity at 100 °C</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the requirements of ASTM D445:21e2.

 $\underline{\text{Viscosity Index}}\text{:} \quad \text{This determination was not problematic. No statistical outliers were}$

observed but two test results were excluded. The calculated reproducibility after rejection of the suspect data is in agreement with the requirements of

ASTM D2270:10R16.

<u>Pour Point Manual</u>: This determination was not problematic. No statistical outliers were observed. The calculated reproducibility is in agreement with the

requirements of ASTM D97:17bR22.

<u>Pour Point Automated</u>: This determination was not problematic. One statistical outlier was observed. The calculated reproducibility after rejection of the statistical

outlier is in agreement with the requirements of ASTM D5950:14R20.

Sulfur: This determination was not problematic. Two statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D4294:21.

Water: This determination was not problematic. Two statistical outliers were

observed. The calculated reproducibility after rejection of the statistical outliers is in agreement with the requirements of ASTM D6304:20

procedure B, but not with procedure A and C.

Water Separability at 54 °C, distilled water: This determination was not problematic. One

statistical outlier was observed over 3 parameters. The calculated

reproducibilities after rejection of the statistical outlier are in agreement with

the requirements of ASTM D1401:21.

<u>Calcium</u>: This determination was not problematic. All reporting participants agreed on

a value below the application range. Therefore, no z-scores are calculated.

Phosphorus: This determination was not problematic. All reporting participants agreed on

a value below the application range. Therefore, no z-scores are calculated.

Zinc: This determination was not problematic. All reporting participants agreed on

a value below the application range. Therefore, no z-scores are calculated.

4.2 Performance evaluation for the group of Laboratories

A comparison has been made between the reproducibility as declared by the reference test method and the reproducibility as found for the group of participating laboratories. The number of significant test results, the average, the calculated reproducibility (2.8 * standard deviation) and the target reproducibility derived from reference methods are presented in the next table.

Parameter	unit	n	average	2.8 * sd	R(lit)
Total Acid Number	mg KOH/g	14	0.051	0.046	0.035
Air Release time at 50 °C	minutes	12	3.9	4.3	2.6
Density at 15 °C	kg/L	20	0.8680	0.0003	0.0005
Flash Point C.O.C.	°C	14	235.1	15.1	18
Foaming Tendency Seq. I	mL	12	110.4	309.0	(46.2)
Foaming Tendency Seq. II	mL	11	16.7	18.5	19.3
Foaming Tendency Seq. III	mL	11	107.5	262.4	(67.2)
Foam Stability Seq. I	mL	11	0	n.e.	n.e.
Foam Stability Seq. II	mL	11	0	n.e.	n.e.
Foam Stability Seq. III	mL	10	0	n.e.	n.e.
Kinematic Viscosity at 40 °C	mm²/s	21	45.965	0.261	0.561
Kinematic Viscosity at 100 °C	mm²/s	22	6.815	0.076	0.094
Viscosity Index		19	102.26	1.93	2
Pour Point Manual	°C	13	-13.2	7.3	9
Pour Point Automated 1 °C int.	°C	7	-12.1	1.9	4.5
Sulfur	mg/kg	8	28.5	5.0	16.6
Water	mg/kg	14	24.7	26.2	87.8
Water Separability at 54 °C, distille	ed water				
Time to reach ≤ 3 mL emulsion	minutes	10	8.3	5.6	20
Time to reach 37 mL water	minutes	10	8.4	5.5	20
Time to reach complete break	minutes	12	12.2	13.5	20
Calcium as Ca	mg/kg	18	<40	n.e	n.e.
Phosphorus as P	mg/kg	19	<10	n.e	n.e.
Zinc as Zn	mg/kg	19	<60	n.e	n.e.

Table 3: reproducibilities of tests on sample #23071

For results between brackets no z-scores are calculated.

Without further statistical calculations it can be concluded that for many tests there is a good compliance of the group of participants with the reference test methods. The problematic tests have been discussed in paragraph 4.1.

4.3 COMPARISON OF THE PROFICIENCY TEST OF MAY 2023 WITH PREVIOUS PTS

	May 2023	May 2022	May 2021	May 2020	May 2019
Number of reporting laboratories	24	26	27	17	20
Number of test results	303	377	368	254	271
Number of statistical outliers	11	16	8	8	4
Percentage of statistical outliers	3.6%	4.2%	2.2%	3.1%	1.5%

Table 4: comparison with previous proficiency tests

In proficiency tests outlier percentages of 3% - 7.5% are quite normal.

The performance of the determinations of the proficiency tests was compared to the requirements of the reference test methods. The conclusions are given in the following table.

Parameter	May 2023	May 2022	May 2021	May 2020	May 2019
Total Acid Number	-	+		+/-	-
Air Release time at 50 °C	-	-	+	+	-
Density at 15 °C	+	+/-	+	+/-	+
Flash Point C.O.C.	+	+	-	+	+
Foaming Tendency Seq. I	()	()	()	()	()
Foaming Tendency Seq. II	+/-	+	+/-	-	+/-
Foaming Tendency Seq. III	()	()	()	()	()
Kinematic Viscosity at 40 °C	++	+	+/-	-	+
Kinematic Viscosity at 100 °C	+	-	++	+/-	+
Viscosity Index	+/-		-	-	-
Pour Point Manual	+	+	-	+	+
Pour Point Automated 1 °C int.	++	+	+	+	+
Sulfur	++	+	-	-	+/-
Water	++	++	-	++	++
Water Separability	++	++	+	++	+
Calcium as Ca	n.e.	n.e.	n.e.	n.e.	n.e.
Phosphorus as P	n.e.	++	n.e.	+	n.e.
Zinc as Zn	n.e.	n.e.	n.e.	n.e.	n.e.

Table 5: comparison of determinations to the reference test methods

For results between brackets no z-scores are calculated.

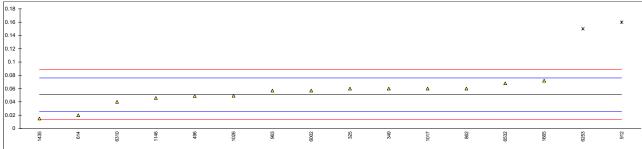
The following performance categories were used:

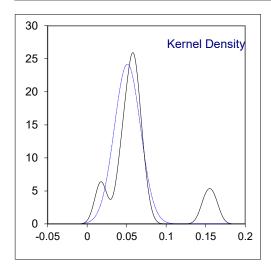
++ : group performed much better than the reference test method

+ : group performed better than the reference test method

+/- : group performance equals the reference test method

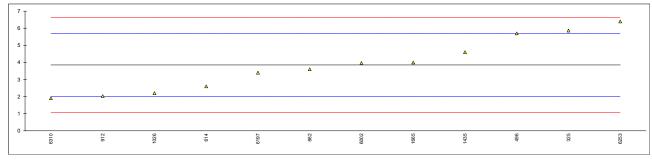
group performed worse than the reference test method

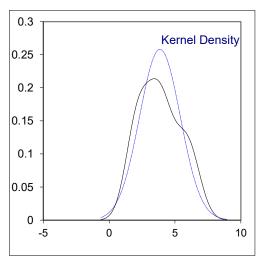

-- : group performed much worse than the reference test method


n.e. : not evaluated

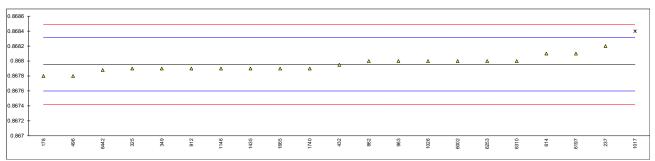
APPENDIX 1

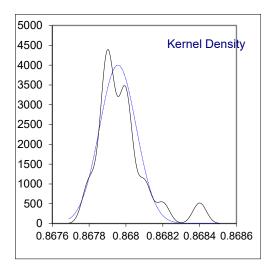
Determination of Total Acid Number on sample #23071; results in mg KOH/g


325 349 432 496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-B D664-A D664-A D664-A D664-A D664-A D974 D664-A D664-A D664-A	 <0.1 0.06 0.06 0.06 0.049 0.02 0.06 0.16 0.057 0.06 0.0493 	DG(0.01)	0.72 -0.16 -2.47 0.72 8.72	Inflection Point	 125 mL 125 mL 60 mL 60 mL
237 325 349 432 496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D664-A D664-A D974 D664-A D664-A	<0.1 0.06 0.06 0.049 0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	0.72 -0.16 -2.47 0.72 8.72	Buffer End Point pH 10 Buffer End Point pH 10 Buffer End Point pH 10 Inflection Point	125 mL 125 mL 60 mL 60 mL
325 349 432 496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D664-A D664-A D974 D664-A D664-A	0.06 0.06 0.049 0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	0.72 -0.16 -2.47 0.72 8.72	Buffer End Point pH 10 Buffer End Point pH 10 Buffer End Point pH 10 Inflection Point	125 mL 60 mL 60 mL
349 432 496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D664-A D664-A D974 D664-A D664-A	0.06 0.049 0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	0.72 -0.16 -2.47 0.72 8.72	Buffer End Point pH 10 Buffer End Point pH 10 Inflection Point	60 mL 60 mL
432 496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D664-A D974 D664-A D664-A	0.049 0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	 -0.16 -2.47 0.72 8.72	Buffer End Point pH 10 Inflection Point	 60 mL
496 614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D974 D664-A D664-A	0.049 0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	-0.16 -2.47 0.72 8.72	Inflection Point	60 mL
614 862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D664-A D974 D664-A D664-A	0.02 0.06 0.16 0.057 0.06 0.0493	DG(0.01)	-2.47 0.72 8.72	Inflection Point	
862 912 963 1017 1026 1146 1184 1244 1435	D664-A D664-A D974 D664-A D664-A	0.06 0.16 0.057 0.06 0.0493	DG(0.01)	0.72 8.72	Inflection Point	
912 963 1017 1026 1146 1184 1244 1435	D664-A D974 D664-A D664-A	0.16 0.057 0.06 0.0493	DG(0.01)	8.72		60 ml
963 1017 1026 1146 1184 1244 1435	D974 D664-A D664-A	0.057 0.06 0.0493	DG(0.01)			00 III.
1017 1026 1146 1184 1244 1435	D664-A D664-A	0.06 0.0493				
1026 1146 1184 1244 1435	D664-A	0.0493		0.48		
1146 1184 1244 1435					Inflection Point	125 mL
1184 1244 1435	D664-A				Buffer End Point pH 10	125 mL
1244 1435		0.046			Buffer End Point pH 10	125 mL
1435						
1665	D664-A	0.015			Buffer End Point pH 10	
	D664-A	0.072			Inflection Point	60 mL
	D664-A	<0.05			Inflection Point	60 mL
	D664-A	0.057		0.48	Inflection Point	60 mL
6016						
6197						
	ISO6618	0.15	DG(0.01)	7.92		
6310	D664-A	0.04		-0.88	Buffer End Point pH 10	60 mL
6442						
6532	D664-A	0.068		1.36	Buffer End Point pH 11	60 mL
					BEP only	Inflection Point only
	normality	OK			not OK	not OK
	n	14			8	4
	outliers	2			0	0
	mean (n)	0.0509			0.0484	0.0622
	st.dev. (n)	0.01649			0.01624	0.00665
	R(calc.)	0.0462			0.0455	0.0186
	st.dev.(D664-A:18e2 IP 60ml)	0.01251				0.01474
	R(D664-A:18e2 IP 60ml)	0.0350				0.0413
compare	e					
-	R(D664-A:18e2 BEP 60ml)	0.0303			0.0289	
	R(D664-A:18e2 IP 125 ml)	0.0098				0.0121
	R(D664-A:18e2 BEP 125 ml)	0.0138			0.0131	
.18 T						
.16						*

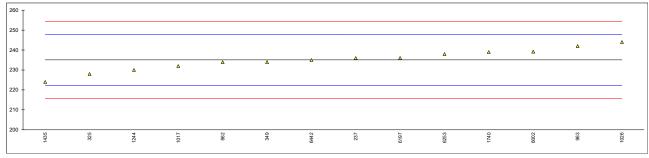


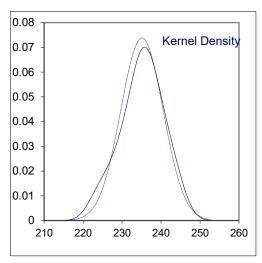
Determination of Air Release time at 50 °C on sample #23071; results in minutes


lab	method	value	mark z(targ)	remarks
178				
179				
237				
325	D3427	5.8667	2.18	
349				
432				
496		5.7	2.00	
614		2.6	-1.36	
	D3427	3.6	-0.28	
912	D3427	2.03	-1.98	
963				
1017				
1026	D3427	2.2	-1.79	
1146				
1184				
1244	D0407	4.0	0.04	
	D3427	4.6	0.81	
	D3427	4	0.16	
1740	1000100	3.97	0.12	
6016	ISO9120	3.97	0.12	
	D3427	3.4	-0.49	
	ISO9120	6.4	2.76	
	D3427	1.9	-2.12	
6442	D3421		-2.12	
6532				
0002				
	normality	OK		
	n	12		
	outliers	0		
	mean (n)	3.856		
	st.dev. (n)	1.5450		
	R(calc.)	4.326		
	st.dev.(D3427:19)	0.9229		
	R(D3427:19)	2.584		
	•			

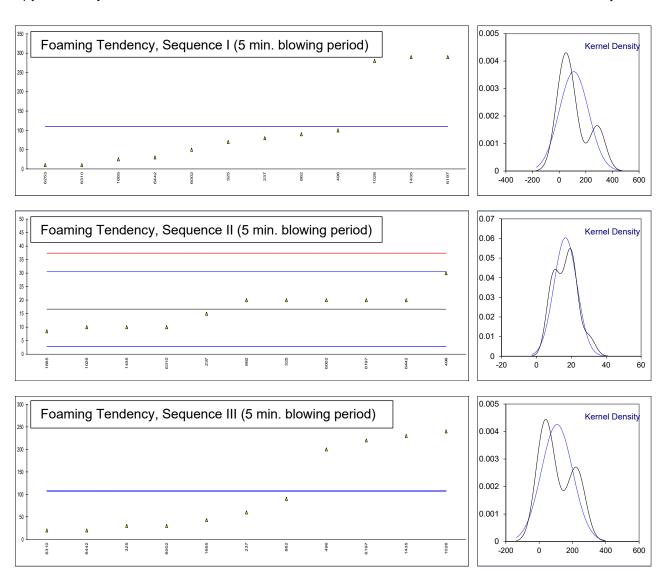


Determination of Density at 15 °C on sample #23071; results in kg/L


lab	method	value	mark	z(targ)	remarks
	D4052	0.8678		-0.88	
179					
	D4052	0.8682		1.36	
	D4052	0.8679		-0.32	
	D4052	0.8679		-0.32	
	D4052	0.86795		-0.04	
	ISO12185	0.8678		-0.88	
	D4052	0.8681		0.80	
	D4052	0.8680		0.24	
	ISO12185	0.8679		-0.32	
	D4052	0.8680		0.24	
	ISO12185	0.8684	R(0.01)	2.48	
	D4052	0.8680		0.24	
1146	D4052	0.8679		-0.32	
1184					
1244					
	D4052	0.8679		-0.32	
	D4052	0.8679		-0.32	
	D4052	0.8679		-0.32	
	ISO12185	0.8680		0.24	
6016					
	D4052	0.8681		0.80	
	ISO3675	0.8680	С	0.24	reported 868.0 kg/L
	D4052	0.868		0.24	
	D4052	0.86788		-0.43	
6532					
	n armality	OK			
	normality				
	n outliers	20 1			
		0.86796			
	mean (n)	0.00790			
	st.dev. (n)	0.000100			
	R(calc.) st.dev.(ISO12185:96)	0.00028			
	R(ISO12185:96)	0.000179			
	N(13012100.90)	0.0003			

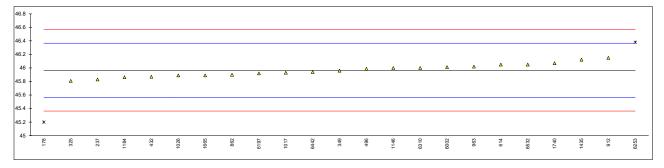


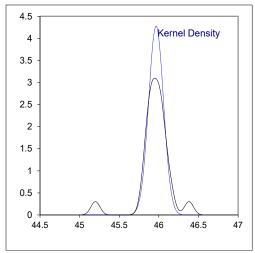
Determination of Flash Point C.O.C. on sample #23071; results in °C


lab	method	value	mark	z(targ)	remarks
178					
179					
	D92	236		0.14	
325		228		-1.10	
349	D92	234		-0.17	
432					
496					
614					
	D92	234		-0.17	
912					
963		242.0		1.08	
1017		232		-0.48	
1026	D92	244		1.39	
1146					
1184					
1244		230.0		-0.79	
1435	D92	224.0		-1.72	
1665			W		test result withdrawn, reported 212 as Flash Point PMcc
1740		239		0.61	
	ISO2592	239.2		0.64	
6016					
6197		236		0.14	
6253	ISO2592	238		0.45	
6310					
6442	D92	235		-0.01	
6532					
	normality	OK			
	n	14			
	outliers	0			
	mean (n)	235.09			
	st.dev. (n)	5.410			
	R(calc.)	15.15			
	st.dev.(D92:18)	6.429			
	R(D92:18)	18			
	(2020)				

Determination of Foaming Tendency, Sequence I, II and III (5 min. blowing period) on sample #23071; results in mL

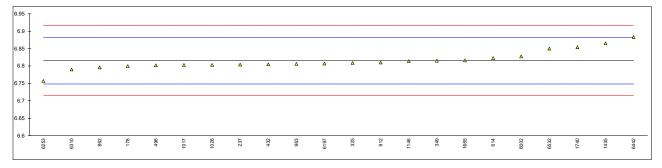
lab	method	Sample used	Diffuser	Seq. I	mark	z(targ)	Seq. II mark	z(targ)	Seq. III	mark	z(targ)
178											
179											
237	D892	As received	Metal	80			15	-0.24	60		
325	D892	As received	Metal	70			20	0.48	30		
349											
432											
496	D892	As received	Metal	100			30	1.93	200		
614											
862	D892	As received	Metal	90			20	0.48	90		
912											
963											
1017											
1026	D892	As received	Metal	280			10	-0.97	240		
1146											
1184											
1244											
1435	D892	After agitation	Metal	290			10	-0.97	230		
1665	D892	After agitation	Stone	25			8.5	-1.18	43		
1740											
6002	ISO6247	After agitation	Metal	50			20	0.48	30		
6016											
6197	D892	As received	Metal	290			20	0.48	220		
6253	ISO6247	As received		10							
6310	D892	After agitation	Metal	10			10	-0.97	20		
6442	D892	After agitation		30			20	0.48	20		
6532											
	normality			suspect			OK		OK		
	n			12			11		11		
	outliers			0			0		0		
	mean (n)			110.42			16.68		107.55		
	st.dev. (n)			110.42			6.604		93.714		
	R(calc.)			308.95			18.49		262.40		
	st.dev.(D892:18)			(16.508)			6.907		(24.002)		
	R(D892:18)			(46.22)			19.34		(67.21)		
	17(0082.10)			(40.22)			13.34		(01.21)		

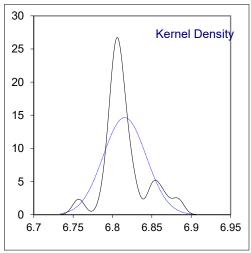



Determination of Foam Stability, Sequence I, II and III (10 min. settling period) on sample #23071; results in mL

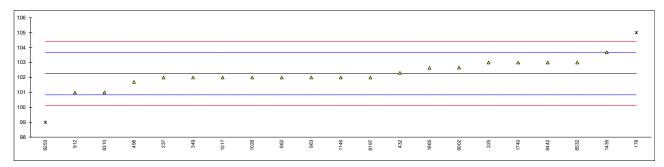
lab	method	Seq. I	mark	z(targ)	Seq. II	mark	z(targ)	Seq. III	mark	z(targ)
178										
179										
237	D892	0			0			0		
325	D892	0			0			0		
349										
432										
496	D892	0			0			0		
614										
862		0			0			0		
912										
963										
1017										
1026	D892	10	f+?		0			10	f+?	
1146										
1184										
1244										
1435	D892	0			0			0		
1665	D892	0			0			0		
1740										
6002	ISO6247	0			0			0		
6016										
6197	D892	0			0			0		
6253	ISO6247	0								
6310	D892	0			0			0		
6442	D892 (Alternative)	0			0			0		
6532										
	n	11			11			10		
	mean (n)	0			0			0		

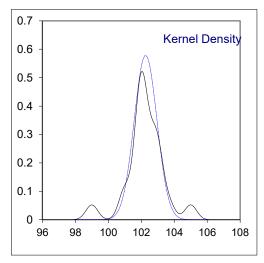
Determination of Kinematic Viscosity at 40 °C on sample #23071; results in mm²/s


lab	method	value	mark	z(targ)	remarks
178	D7279 corr. to D445	45.2	C,R(0.01)	-3.82	
179					
237	D445	45.83		-0.67	
325	D445	45.81		-0.77	
	D445	45.96		-0.02	
432	D445	45.87		-0.47	
496		45.988		0.11	
614	D7042	46.05		0.42	
862	D445	45.90		-0.32	
912	D445	46.15		0.92	
963	D445	46.02		0.27	
1017	D445	45.93		-0.17	
1026	D445	45.89	С	-0.37	first reported 45.59
1146	D445	46		0.17	
1184	D445	45.863		-0.51	
1244					
1435	D7042	46.122		0.78	
1665	D445	45.89		-0.37	
1740	D445	46.07		0.52	
6002	ISO3104	46.0121		0.24	
6016					
6197	D445	45.92		-0.22	
6253	ISO3104	46.38	R(0.01)	2.07	
6310	D7279 corr. to D445	46.0		0.17	
	D7042	45.94		-0.12	
6532	D445	46.05		0.42	
	normality	OK			
	n	21			
	outliers	2			
	mean (n)	45.9650			
	st.dev. (n)	0.09317			
	R(calc.)	0.09317			
	st.dev.(D445:21e2)	0.2009			
	R(D445:21e2)	0.20028			
	11(1)+43.2 162)	0.3000			

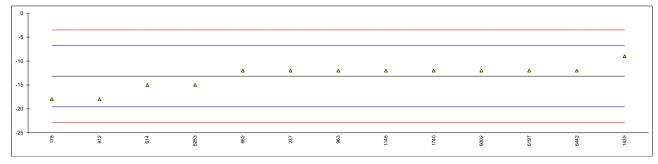


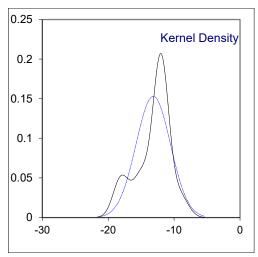
Determination of Kinematic Viscosity at 100 °C on sample #23071; results in mm²/s


lab	method	value	mark	z(targ)	remarks
178	D7279 corr. to D445	6.80	С	-0.46	
179					
237	D445	6.804		-0.34	
325		6.809		-0.19	
	D445	6.815		-0.01	
	D445	6.805		-0.31	
	D445	6.8021		-0.40	
	D7042	6.823		0.22	
862	D445	6.796		-0.58	
	D445	6.810		-0.16	
963	D445	6.806	С	-0.28	first reported 6.725
1017	D445	6.803		-0.37	
1026	D445	6.803		-0.37	
1146	D445	6.814		-0.04	
1184					
1244					
1435	D7042	6.8652		1.48	
1665	D445	6.816		0.02	
	D445	6.854		1.15	
6002	ISO3104	6.8277		0.36	
6016					
6197	D445	6.807		-0.25	
6253	ISO3104	6.757		-1.74	
6310	D7279 corr. to D445	6.79		-0.76	
6442	D7042	6.883		2.01	
6532	D445	6.85		1.03	
	normality	suspect			
	n	22			
	outliers	0			
	mean (n)	6.8155			
	` '				
	st.dev. (n) R(calc.)	0.02723 0.0762			
	st.dev.(D445:21e2)	0.0762			
	R(D445:21e2)	0.03339			
	N(D443.2 IC2)	0.0941			

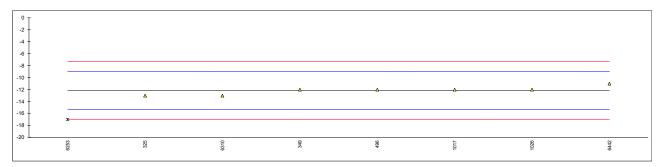


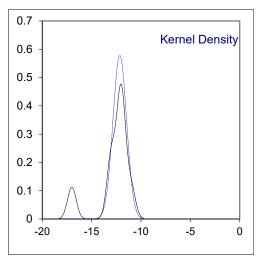
Determination of Viscosity Index on sample #23071


method	value	mark	z(targ)	remarks
D2270	105	ex,C	3.83	ex = statistical outlier in KV 40 °C, first reported 108
D2270	101.7		-0.79	
		•		
		С		first reported 98
D2270	102		-0.37	
D0070				
1302909				
D2270				
		ev F		ex= statistical outlier in KV 40 °C, calc. diff. iis calculated 98
		CX,L		CX- Statistical outlier in TVV 40 O, calc. um. lis calculated 50
		F		calc. difference, iis calc. 105
		_		calc. difference, no calc. 100
DZZTO	100		1.00	
normality	OK			
n	19			
outliers	0+2ex			
mean (n)	102.26			
st.dev. (n)	0.690			
R(calc.)	1.93			
st.dev.(D2270:10R16)	0.714			
R(D2270:10R16)	2			
	D2270 ISO2909 D2270	D2270 105 D2270 102 D2270 103 D2270 102.3 D2270 101.7 D2270 D2270 101.7 D2270 D2270 101 D2270 102 D2270 102 D2270 102 D2270 102 D2270 102 D2270 103.69 D2270 103.69 D2270 103 ISO2909 99 D2270 101 D2270 101 D2270 103 D2270	D2270 105 ex,C D2270 102 D2270 103 D2270 102 D2270 102.3 D2270 101.7 D2270 101.7 D2270 102 D2270 101 D2270 102 D2270 103.69 D2270 103.69 D2270 10366 D2270 103 E D2270 101 D2270 103 ISO2909 99 ex,E D2270 101 D2270 103 ISO2909 99 ex,E D2270 103 ISO2909 99 ex,E D2270 103 D2270 103 ISO2909 99 ex,E D2270 103 D22	D2270 105 ex,C 3.83

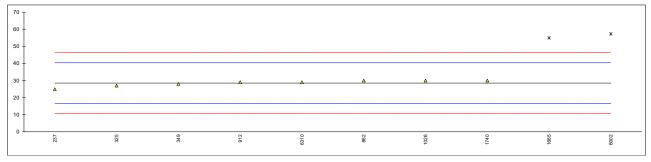


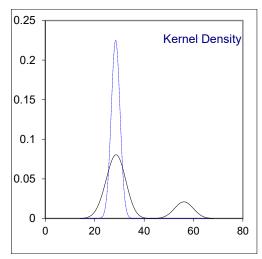
Determination of Pour Point Manual on sample #23071; results in °C


lab	method	value	mark z(targ)	remarks
178	D97	-18	-1.51	
179				
237	D97	-12	0.36	
325				
349				
432				
496				
614	D97	-15	-0.57	
862	D97	-12	0.36	
912		-18	-1.51	
963	D97	-12	0.36	
1017				
1026				
1146	D97	-12	0.36	
1184				
1244				
1435	ISO3016	-9	1.29	
1665				
1740	D97	-12	0.36	
6002	ISO3016	-12	0.36	
6016				
6197		-12	0.36	
6253	NF T60-105	-15	-0.57	
6310				
6442	D97	-12	0.36	
6532				
	normality	OK		
	n	13		
	outliers	0		
	mean (n)	-13.15		
	st.dev. (n)	2.609		
	R(calc.)	7.31		
	st.dev.(D97:17bR22)	3.214		
	R(D97:17bR22)	9		
	(-		

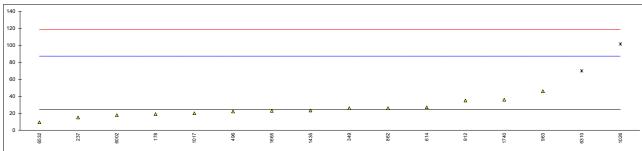


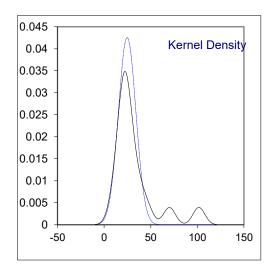
Determination of Pour Point Automated 1 °C interval on sample #23071; results in °C


lab	method	value	mark	z(targ)	remarks
178					
179					
237					
325	D5950	-13		-0.53	
349	D5950	-12		0.09	
432					
496	D5950	-12		0.09	
614					
862					
912					
963					
	D5950	-12		0.09	
1026	D5950	-12		0.09	
1146					
1184					
1244					
1435					
1665					
1740 6002					
6016					
6197					
	NF T60-105	 -17	G(0.01)	-3.02	
	D5950	-17	G(0.01)	-0.53	
	D6892	-13		0.71	
6532	D0032				
0002					
	normality	unknown			
	n	7			
	outliers	1			
	mean (n)	-12.14			
	st.dev. (n)	0.690			
	R(calc.)	1.93			
	st.dev.(D5950:14R20)	1.607			
	R(D5950:14R20)	4.5			



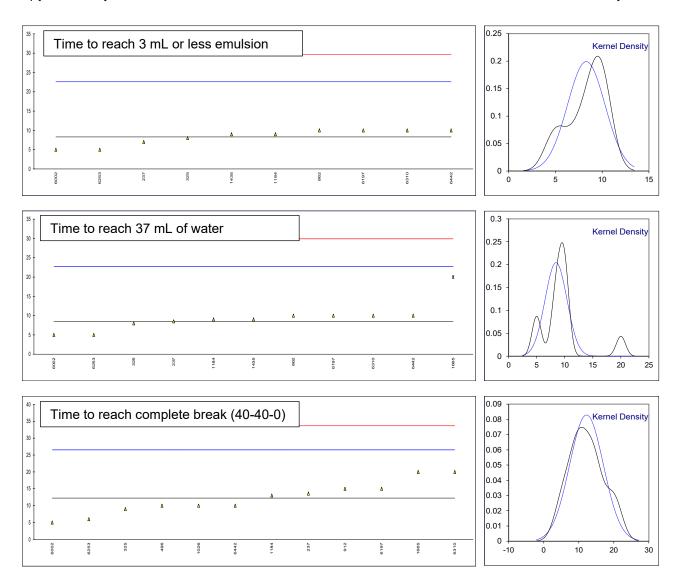
Determination of Sulfur on sample #23071; results in mg/kg


lab	method	value	mark	z(targ)	remarks
178					
179					
237	D4294	25		-0.59	
325	INH-D6443/D4927	27		-0.25	
349	D2622	28		-0.08	
432					
496					
614					
862	D2622	30		0.25	
912	D4294	29		0.08	
963					
1017					
1026	D5185	30		0.25	
1146					
1184					
1244					
1435					
1665	ISO19579	55	DG(0.01)	4.46	
1740	D4294	30		0.25	
6002	D5185	57.3	DG(0.01)	4.85	
6016					
6197					
6253					
6310	D7751	29		0.08	
6442					
6532					
	normality	suspect			
	n	8 '			
	outliers	2			
	mean (n)	28.50			
	st.dev. (n)	1.773			
	R(calc.)	4.96			
	st.dev.(D4294:21)	5.936			
	R(D4294:21)	16.62			
	,				



Determination of Water on sample #23071; results in mg/kg

lab	method	value	mark	z(targ)	remarks
178	D6304-B:20	19		-0.18	
179					
237	D6304-C:16e1	15		-0.31	
325	D6304-C:20	<100			
349	D6304-A:20	26		0.04	
432					
496	D6304-B:20	22.1		-0.08	
614	D6304-B:20	27		0.07	
	D6304-A	26		0.04	
	D6304	35		0.33	
	D6304-A:16e1	46		0.68	
		20	0(0.04)	-0.15	
1026	D6304-C:20	101.69	G(0.01)	2.46	
1146 1184	D6304-B:20	<100			
1244					
1435	D6304-A:20	23.2		-0.05	
1665	D6304-A:20	22.9		-0.06	
1740	D6304-A.20 D6304-B:20	36	С		first reported 106
6002	In house	17.74	O	-0.22	mat reported 100
6016	III IIOU3C			-0.22	
6197					
6253					
6310	D6304-B:16e1	70	C,G(0.01)	1.45	first reported 76.4
6442			-,-(,		
6532	ISO12937	9.35		-0.49	
	normality	OK			
	n	14			
	outliers	2			
	mean (n)	24.66			
	st.dev. (n)	9.369			
	R(calc.)	26.23			
	st.dev.(D6304-B:20)	31.353			range 30-2100 mg/kg
Compar	R(D6304-B:20)	87.79			
Jonnpai	R(D6304-A:20)	22.42			range 20-25000 mg/kg
	R(D6304-A:20)	14.46			range 20-2000 mg/kg
	(2 300 1 0.20)				gs = 0 000g/Ng



Determination of Water Separability at 54 °C, distilled water on sample #23071; results in minutes

		3 mL or less			37 mL o	f		complete break		test	time test
lab	method	emulsion	mark	z(targ)	water	mark	z(targ)	(40-40-0)	mark z(targ)	aborted	aborted
178											
179											
237	D1401	7.0		-0.18	8.5		0.01	13.6	0.19		
325	D1401	8		-0.04	8		-0.06	9	-0.45	No	9
349											
432											
496								10	-0.31	No	
614											
862	D1401	10		0.24	10		0.22				10
912								15	0.39		
963											
1017											
1026								10	-0.31		10
1146										Yes	30
1184	D1401	9		0.10	9		0.08	13	0.11		
1244											
1435	D1401	9		0.10	9		0.08			No	
1665					20	G(1)	1.62	20	1.09	No	
1740											
6002	ISO6614	5		-0.46	5		-0.48	5	-1.01	No	5
6016											
6197	D1401	10		0.24	10		0.22	15	0.39	No	
6253	ISO6614	5		-0.46	5		-0.48	6	-0.87		
6310	D1401	10	С	0.24	10	С	0.22	20	1.09		
6442		10		0.24	10		0.22	10	-0.31	No	
6532											
	normality	OK			OK			ОК			
	n	10			10			12			
	outliers	0			1			0			
	mean (n)	8.30			8.45			12.22			
	st.dev. (n)	2.003			1.950			4.815			
	R(calc.)	5.61			5.46			13.48			
	st.dev.(D1401:21)	7.143			7.143			7.143			
	R(D1401:21)	20			20			20			
	11(01401.21)	20			20			20			

Lab 6310 first reported 20 min for time to reach 3 mL or less emulsion and 20 min for time to reach 37 mL of water

Determination of Water Separability at 54 °C, distilled water on sample #23071; results in mL

lab	method	oil phase	mark	z(targ)	water phase	mark	z(targ)	emulsion phase	mark	z(targ)
178										
179										
237	D1401	40.0			40.0			0		
325	D1401	40			40			0		
349										
432										
496	D1401	40			40			0		
614										
862	D1401	40			37			3		
912	D1401	40			40			0		
963										
1017										
1026	D1401	40			40			0		
1146	D1401	0			36			44		
1184	D1401	43			36			1		
1244										
1435										
1665	D1401	43			37			0		
1740										
6002	ISO6614	40			40			0		
6016										
6197										
6253										
6310										
6442										
6532										

Determination of Calcium as Ca on sample #23071; results in mg/kg

lab	method	value	mark z(ta	rg) remarks
178	D5185	5	-	
179			-	
237	D5185	<40	-	
325	D5185	<1	-	
349		0	-	
432	D5185	<40	-	
496	D5185	1.784	-	
614	D5185	<1	_	
862		<1	_	
912	D5185	<1	-	
963		<0.10	-	
1017			-	
1026	D5185	0.1451	-	
1146		<5	-	
1184			-	
1244			-	
1435	D5185	0.081	-	
1665			-	
1740		<1	-	
6002	D5185	0.07	-	
6016			-	
6197	D4951	5.99	-	
6253			-	·
6310		<1	-	·
6442	D5185	<10	-	
6532			-	
	n	18		
	n mean (n)	<40		
	mean (n)	~4 U		

Determination of Phosphorus as P on sample #23071; results in mg/kg

lab	method	value	mark z(targ)	remarks
178	D5185	3		
179				
237	D5185	<10		
325	D5185	<2		
349		0		
432		<10		
496	D5185	1.112		
	D5185	<2		
862		<1		
912	D5185	<1		
963		<0.10		
1017				
1026	D5185	0.2986		
1146		<10		
1184				
1244				
1435	D5185	0		
1665	D5185	5.11		
1740		2		
6002	D5185	0.597		
6016				
6197	D4951	4.64		
6253				
6310		<1		
6442	D5185	<10		
6532				
		10		
	n maan (n)	19		
	mean (n)	<10		

Determination of Zinc as Zn on sample #23071; results in mg/kg

lab	method	value	mark z(1	targ)	remarks
178	D5185	1	•		
179					
237	D5185	<60			
325	D5185	<1			
349		0			
432	D5185	<60			
496	D5185	0.941			
614	D5185	<1			
862		<1			
912	D5185	<1			
963		0.14			
1017					
1026	D5185	0.1119			
1146		<5			
1184					
1244					
1435		0.075			
1665		0.38			
1740		<1			
6002	D5185	0.318			
6016					
6197	D4951	2.14			
6253					
6310		1			
6442	D5185	<10			
6532					
	n	19			
	mean (n)	<60			
	1110011 (11)	.50			

APPENDIX 2

Number of participants per country

- 1 lab in AUSTRALIA
- 1 lab in AUSTRIA
- 4 labs in BELGIUM
- 1 lab in CHINA, People's Republic
- 1 lab in FRANCE
- 1 lab in GERMANY
- 1 lab in GREECE
- 1 lab in INDIA
- 1 lab in KAZAKHSTAN
- 2 labs in KOREA, Republic of
- 1 lab in MOROCCO
- 2 labs in NETHERLANDS
- 1 lab in NIGERIA
- 1 lab in POLAND
- 1 lab in PORTUGAL
- 1 lab in SAUDI ARABIA
- 1 lab in SINGAPORE
- 2 labs in SPAIN
- 2 labs in UNITED STATES OF AMERICA

APPENDIX 3

Abbreviations

C = final test result after checking of first reported suspect test result

 $\begin{array}{ll} D(0.01) &= \text{outlier in Dixon's outlier test} \\ D(0.05) &= \text{straggler in Dixon's outlier test} \\ G(0.01)/G(1) &= \text{outlier in Grubbs' outlier test} \\ G(0.05) &= \text{straggler in Grubbs' outlier test} \\ DG(0.01) &= \text{outlier in Double Grubbs' outlier test} \\ DG(0.05) &= \text{straggler in Double Grubbs' outlier test} \\ \end{array}$

R(0.01) = outlier in Rosner's outlier test R(0.05) = straggler in Rosner's outlier test

E = calculation difference between reported test result and result calculated by iis

W = test result withdrawn on request of participant ex = test result excluded from statistical evaluation

n.a. = not applicable
n.e. = not evaluated
n.d. = not detected
fr. = first reported

f+? = possibly a false positive test result? f-? = possibly a false negative test result?

SDS = Safety Data Sheet

Literature

- 1 iis Interlaboratory Studies, Protocol for the Organisation, Statistics & Evaluation, June 2018
- 2 ISO5725:86
- 3 ISO5725 parts 1-6:94
- 4 ISO13528:05
- 5 M. Thompson and R. Wood, J. AOAC Int, <u>76</u>, 926, (1993)
- 6 W.J. Youden and E.H. Steiner, Statistical Manual of the AOAC, (1975)
- 7 P.L. Davies, Fr. Z. Anal. Chem, <u>331</u>, 513, (1988)
- 8 J.N. Miller, Analyst, <u>118</u>, 455, (1993)
- 9 Analytical Methods Committee, Technical Brief, No 4, January 2001
- 10 P.J. Lowthian and M. Thompson, The Royal Society of Chemistry, Analyst, <u>127</u>, 1359-1364, (2002)
- 11 W. Horwitz and R. Albert, J. AOAC Int, <u>79.3</u>, 589-621, (1996)
- Bernard Rosner, Percentage Points for a Generalized ESD Many-Outlier Procedure, Technometrics, 25(2), 165-172, (1983)